Skip to main content

The Effect of Robot-Assisted Gait Training(Walkbot_K) on Locomotor Function and Functional Capability for Daily Activities in Children

The Effect of Robot-Assisted Gait Training(Walkbot_K) on Locomotor Function and Functional Capability for Daily Activities in Children

Abstract
: Purpose: The effectiveness of robot-assisted gait training (RAGT, Walkbot_K) in children with cerebral palsy (CP), especially in terms of improving the performance of daily activities, remains unclear. Therefore, we aimed to investigate the effectiveness of RAGT(Walkbot_K) in children with CP.


Methods: In this single-center, single-blinded, randomized cross-over trial, we enrolled 20 children with CP with Gross Motor Function Classification System (GMFCS) levels II–IV (13 males; age range, 6.75 ± 2.15 years). The participants were randomized into the RAGT(Walkbot_K)/standard care (SC) (n = 10) and SC/RAGT(Walkbot_K)/SC
sequence groups (n = 10). Using a Walkbot-K system, the RAGT(Walkbot_K) program comprised 3 × 30-min sessions/week for 6 weeks with a continued SC program. The SC program comprised 2–4 conventional physiotherapy sessions/week for 6 weeks. The Gross Motor Function Measure-88 (GMFM-88), the pediatric functional independence measure (WeeFIM), and the Canadian occupational performance measure (COPM) scores were assessed pre- and post-RAGT or SC periods and treatment, period, follow-up, and carry-over effects were analyzed. Energy expenditure and body composition were measured pre- and post-RAGT.

Results: Significant treatment effects were observed in dimensions D and E of the GMFM (D: p = 0.018; E: p = 0.021) scores, WeeFIM mobility subtotal (p = 0.007), and COPM performance (p < 0.001) and satisfaction (p = 0.001) measure scores. The period, follow-up, and carry-over effects were not statistically significant. The gross energy cost significantly decreased (p = 0.041) and the skeletal muscle mass increased (p = 0.014) at post-RAGT assessment. The factors
associated with functional outcomes showed significant improvements in the GMFM D scores and were mainly observed in children with GMFCS levels II–III compared to those classified at level IV (p = 0.038).

Conclusion: RAGT(Walkbot_K) had training benefits for children with CP(Cerebral palsy). Specifically, it improved locomotor function and functional capability for daily activities. These effects were better in ambulatory children with CP(Cerebral palsy). However, as SC(Standard care) interventions continued during the RAGT(Walkbot_K) period, these improvements may be also related to multiple treatment effects.


View Walkbot clinical papers


Comments

Popular posts from this blog

Indications and contraindications of Walkbot Lower-Limb Robotic Rehabilitation

Information about indications and contraindications is one of the most frequently asked questions. Thus, we prepared a post for basic indications and contraindications of Walkbot.  Indications and contraindications of Walkbot Lower-Limb Robotic Rehabilitation(1)  Indications and contraindications of Walkbot Lower-Limb Robotic Rehabilitation(2) 워크봇(Walkbot) 보행재활로봇 적응증 & 금기증 #WALKBOT #RobotAssistedGaitTraining   #RoboticGaitTraining #LowerLimbRehabilitationRobot #RoboticRehabilitation #GaitTraining #RehabilitationRobot #Rehabilitation #Stroke #CerebralPalsy  #Neuroplasticity 

Walkbot Lower-Limb Robotic Rehabilitation series

Walkbot is a state-of-the-art lower limb rehabilitation exoskeleton robot that provides natural walking movements and various training programs for patients with walking disorders due to stroke, spinal cord injury, cerebral palsy, etc. Walkbot Lower-Limb Robotic Rehabilitation have 5 models. 3 for adults and 2 for pediatrics.   1. Walkbot Premim for Adult a. Ankle-knee-hip joints synchronization b. Interactive training c. 3D Motion simulation d. Robot sensitivity setting e. Dynamic BWSTT f. Automatic leg length adjustment g. Active augmented reality feedback software (optional) h. Force plate (optional) 2. Walkbot S for Adult a. Ankle-knee-hip joints synchronization b. Interactive training c. 3D Motion simulation d. Robot sensitivity setting e. Dual BWSTT (Static type) f. Automatic leg length adjustment g. Active augmented reality feedback software (optional) 3. Walkbot G for Adult a. Ankle-knee-hip joints synchronization b. Interactive training c. 3D Motion simulation d. Robot sensiti

Walkbot Lower-Limb Robotic Rehabilitation series (2) - Walkbot Premium model

  Walkbot Premim Model 1. Active augmented reality feedback software (optional) 2. Interactive training 3. 3D Motion simulation 4. Robot sensitivity setting 5. Dynamic BWSTT 6. Automatic leg length adjustment 7. Ankle-knee-hip joints synchronization 8. Force plate (optional) Technical specification 1. Patient Height : 140 ~ 200cm 2. Leg length (Hip-knee) : 350 ~ 480mm 3. Leg length (Knee-Ankle) : 353 ~ 483mm 4. Dimensions (L x W x H) : 380 x 200 x 257cm 5. Space requirements (L x W x H) : 530 x 300 x 265cm 6. Power resources : AC 230V, 50/60Hz Single phase 10A #WALKBOT   #robot assisted gait training   #robot assisted gait rehabilitation   #gait training   #rehabilitation   #robotic rehabilitation   # neuroplasticity   #advanced rehabilitation   #Lower-Limb Robotic Rehabilitation # Robotic Rehabilitation for the Lower Extremity