Skip to main content

(Walkbot) Minimal Contact Robotic Stroke Rehabilitation on Risk of COVID-19

 (Walkbot) Minimal Contact Robotic Stroke Rehabilitation on Risk of COVID-19,Work Efficiency and Sensorimotor Function

Abstract

Background

Patients with hemiparetic stroke undergo direct, labor-intensive hands-on conventional physical therapy to improve sensorimotor function, spasticity, balance, trunk stability, and activities of daily living (ADLs). Currently, direct, intensive hands-on therapeutic modalities have increased concerns during the coronavirus (COVID-19) global pandemic. We developed an innovative
Walkbot to mitigate the issues surrounding conventional hands-on physical therapy.

Objectives

We aimed to compare the effects of minimal-contact robotic rehabilitation (MRR) and full-contact conventional rehabilitation (FCR) on static and dynamic balance, trunk stability, ADLs, spasticity, and cognition changes in patients with hemiparetic stroke.

Methods

A total of 64 patients with hemiparetic stroke (mean age = 66.38 13.17; 27 women) underwent either MRR or FCR three times/week for 6 weeks. Clinical outcome measurements included the Trunk Impairment Scale (TIS), the Berg Balance Scale (BBS), the modified Ashworth Scale (MAS), the Fugl—Meyer Assessment (FMA), and the modified Barthel Index (MBI) scores. A 2 2 repeated analysis of variance (ANOVA) was performed, and an independent t-test was used to determine statistical differences in the physiotherapists’ work efficiency and COVID-19 transmission risk.

Results

The ANOVA showed that MRR had effects superior to those of FCR on the TIS, the BBS, the FMA, and the MBI (p < 0.05), but not on the MAS (p = 0.230). MRR showed a greater decrease on the physiotherapist’s work efficiency and COVID-19 transmission risk
(p < 0.05). Our results provide clinical evidence that robot-assisted locomotor training helps maximize the recovery of sensorimotor function, abnormal synergy, balance, ADLs, and trunk stability, and facilitates a safer environment and less labor demand than conventional stroke rehabilitation.


Comments

Popular posts from this blog

Indications and contraindications of Walkbot Lower-Limb Robotic Rehabilitation

Information about indications and contraindications is one of the most frequently asked questions. Thus, we prepared a post for basic indications and contraindications of Walkbot.  Indications and contraindications of Walkbot Lower-Limb Robotic Rehabilitation(1)  Indications and contraindications of Walkbot Lower-Limb Robotic Rehabilitation(2) 워크봇(Walkbot) 보행재활로봇 적응증 & 금기증 #WALKBOT #RobotAssistedGaitTraining   #RoboticGaitTraining #LowerLimbRehabilitationRobot #RoboticRehabilitation #GaitTraining #RehabilitationRobot #Rehabilitation #Stroke #CerebralPalsy  #Neuroplasticity 

Walkbot Lower-Limb Robotic Rehabilitation series

Walkbot is a state-of-the-art lower limb rehabilitation exoskeleton robot that provides natural walking movements and various training programs for patients with walking disorders due to stroke, spinal cord injury, cerebral palsy, etc. Walkbot Lower-Limb Robotic Rehabilitation have 5 models. 3 for adults and 2 for pediatrics.   1. Walkbot Premim for Adult a. Ankle-knee-hip joints synchronization b. Interactive training c. 3D Motion simulation d. Robot sensitivity setting e. Dynamic BWSTT f. Automatic leg length adjustment g. Active augmented reality feedback software (optional) h. Force plate (optional) 2. Walkbot S for Adult a. Ankle-knee-hip joints synchronization b. Interactive training c. 3D Motion simulation d. Robot sensitivity setting e. Dual BWSTT (Static type) f. Automatic leg length adjustment g. Active augmented reality feedback software (optional) 3. Walkbot G for Adult a. Ankle-knee-hip joints synchronization b. Interactive training c. 3D Motion simulation d. Robot sensiti

Walkbot Lower-Limb Robotic Rehabilitation series (2) - Walkbot Premium model

  Walkbot Premim Model 1. Active augmented reality feedback software (optional) 2. Interactive training 3. 3D Motion simulation 4. Robot sensitivity setting 5. Dynamic BWSTT 6. Automatic leg length adjustment 7. Ankle-knee-hip joints synchronization 8. Force plate (optional) Technical specification 1. Patient Height : 140 ~ 200cm 2. Leg length (Hip-knee) : 350 ~ 480mm 3. Leg length (Knee-Ankle) : 353 ~ 483mm 4. Dimensions (L x W x H) : 380 x 200 x 257cm 5. Space requirements (L x W x H) : 530 x 300 x 265cm 6. Power resources : AC 230V, 50/60Hz Single phase 10A #WALKBOT   #robot assisted gait training   #robot assisted gait rehabilitation   #gait training   #rehabilitation   #robotic rehabilitation   # neuroplasticity   #advanced rehabilitation   #Lower-Limb Robotic Rehabilitation # Robotic Rehabilitation for the Lower Extremity